93 lines
2.2 KiB
Markdown
93 lines
2.2 KiB
Markdown
<p align="center">
|
|
<a>
|
|
<img src='https://img.shields.io/badge/python-3.6%7C3.7%7C3.8-blueviolet' alt='Python' />
|
|
</a>
|
|
</p>
|
|
|
|
# CFA - Class-Incremental Learning via Knowledge Amalgamation
|
|
|
|
Official repository of [Class-Incremental Learning via Knowledge Amalgamation](https://github.com/Ivsucram/CFA-ECML-PKDD-2022)
|
|
|
|
## Citing this work
|
|
|
|
```
|
|
To be updated
|
|
```
|
|
|
|
## Setting up a CONDA environment
|
|
|
|
|
|
Execute line by line
|
|
|
|
```
|
|
conda create -n CFA python=3.8
|
|
conda activate CFA
|
|
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
|
|
conda install tqdm matplotlib
|
|
pip install avalanche-lib
|
|
```
|
|
|
|
## Setting up a PIP environment
|
|
|
|
Execute line by line
|
|
|
|
```
|
|
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
|
pip install tqdm
|
|
pip install matplotlib
|
|
pip install avalanche-lib
|
|
```
|
|
|
|
## Running
|
|
|
|
|
|
For a list of commands:
|
|
```
|
|
python cfa.py --help
|
|
```
|
|
|
|
For MNIST
|
|
```
|
|
python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy fixed
|
|
python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy grow
|
|
```
|
|
|
|
For CIFAR10
|
|
```
|
|
python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy fixed
|
|
python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy grow
|
|
```
|
|
|
|
For CIFAR100
|
|
|
|
```
|
|
python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy fixed
|
|
python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy grow
|
|
```
|
|
|
|
For Tiny ImageNet
|
|
|
|
```
|
|
python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy fixed
|
|
python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy grow
|
|
```
|
|
|
|
## Tip 1
|
|
|
|
If you are not intersted in evaluating the BWT and FWT metrics, just the ACC, modify the line 721 from:
|
|
|
|
```python
|
|
for n_task in range(2, n_tasks + 1, 1):
|
|
```
|
|
|
|
to
|
|
```python
|
|
for n_task in range(n_tasks, n_tasks + 1, 1):
|
|
```
|
|
|
|
In order to calculate BWT and FWT, we need to run multiple CFA experiments, which can be time-consuming. By making this change, you force the algorithm to just run a full amalgamation of all teachers. This will give you the ACC metric, but BWT and FWT will not be valid.
|
|
|
|
## Tip 2
|
|
|
|
CFA accuracy (the student model accuracy) is really dependent on the performance of the teacher models.
|