Python

# CFA - Class-Incremental Learning via Knowledge Amalgamation Official repository of [Class-Incremental Learning via Knowledge Amalgamation](https://github.com/Ivsucram/CFA-ECML-PKDD-2022) ## Citing this work ``` To be updated ``` ## Setting up a CONDA environment Execute line by line ``` conda create -n CFA python=3.8 conda activate CFA conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch conda install tqdm matplotlib pip install avalanche-lib ``` ## Setting up a PIP environment Execute line by line ``` pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install tqdm pip install matplotlib pip install avalanche-lib ``` ## Running For a list of commands: ``` python cfa.py --help ``` For MNIST ``` python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy fixed python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy grow ``` For CIFAR10 ``` python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy fixed python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy grow ``` For CIFAR100 ``` python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy fixed python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy grow ``` For Tiny ImageNet ``` python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy fixed python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy grow ``` ## Tip 1 If you are not intersted in evaluating the BWT and FWT metrics, just the ACC, modify the line 721 from: ```python for n_task in range(2, n_tasks + 1, 1): ``` to ```python for n_task in range(n_tasks, n_tasks + 1, 1): ``` In order to calculate BWT and FWT, we need to run multiple CFA experiments, which can be time-consuming. By making this change, you force the algorithm to just run a full amalgamation of all teachers. This will give you the ACC metric, but BWT and FWT will not be valid. ## Tip 2 CFA accuracy (the student model accuracy) is really dependent on the performance of the teacher models.