Update README.md

This commit is contained in:
Marcus Vinicius de Carvalho 2022-06-23 23:47:13 +08:00 committed by GitHub
parent 6a27678f98
commit 1bb1ec6cbb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 92 additions and 2 deletions

View File

@ -1,2 +1,92 @@
# CFA-ECML-PKDD-2022
Class-Incremental Learning via Knowledge Amalgamation - ECML PKDD 2022
<p align="center">
<a>
<img src='https://img.shields.io/badge/python-3.6%7C3.7%7C3.8-blueviolet' alt='Python' />
</a>
</p>
# CFA - Class-Incremental Learning via Knowledge Amalgamation
Official repository of [Class-Incremental Learning via Knowledge Amalgamation](https://github.com/Ivsucram/CFA-ECML-PKDD-2022)
## Citing this work
```
To be updated
```
## Setting up a CONDA environment
Execute line by line
```
conda create -n CFA python=3.8
conda activate CFA
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install tqdm matplotlib
pip install avalanche-lib
```
## Setting up a PIP environment
Execute line by line
```
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip install tqdm
pip install matplotlib
pip install avalanche-lib
```
## Running
For a list of commands:
```
python cfa.py --help
```
For MNIST
```
python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy fixed
python cfa.py --dataset mnist --memory_budget 1000 --memory_strategy grow
```
For CIFAR10
```
python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy fixed
python cfa.py --dataset cifar10 --memory_budget 1000 --memory_strategy grow
```
For CIFAR100
```
python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy fixed
python cfa.py --dataset cifar100 --memory_budget 1000 --memory_strategy grow
```
For Tiny ImageNet
```
python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy fixed
python cfa.py --dataset tiny10 --memory_budget 1000 --memory_strategy grow
```
## Tip 1
If you are not intersted in evaluating the BWT and FWT metrics, just the ACC, modify the line 721 from:
```python
for n_task in range(2, n_tasks + 1, 1):
```
to
```python
for n_task in range(n_tasks, n_tasks + 1, 1):
```
In order to calculate BWT and FWT, we need to run multiple CFA experiments, which can be time-consuming. By making this change, you force the algorithm to just run a full amalgamation of all teachers. This will give you the ACC metric, but BWT and FWT will not be valid.
## Tip 2
CFA accuracy (the student model accuracy) is really dependent on the performance of the teacher models.