585 lines
23 KiB
Matlab
585 lines
23 KiB
Matlab
filename;
|
|
|
|
dmS = DataManipulator('');
|
|
dmS.loadSourceCSV(filename);
|
|
|
|
dmT = DataManipulator('');
|
|
dmT.loadTargetCSV(filename);
|
|
|
|
crSource = [];
|
|
crTarget = [];
|
|
trainTime = [];
|
|
testTime = [];
|
|
KlLossEvolution = [];
|
|
classificationLoss = [];
|
|
nodeEvolution = [];
|
|
discriminativeLoss = [];
|
|
generativeLossTarget = [];
|
|
agmmTargetGenSize = [];
|
|
agmmSourceDiscSize = [];
|
|
|
|
nodeEvolutionTarget = [];
|
|
nodeEvolutionSource = [];
|
|
gmmTargetBatch = [];
|
|
gmmSourceBatch = [];
|
|
|
|
|
|
nn = NeuralNetwork([dmS.nFeatures 1 dmS.nClasses]);
|
|
ae = DenoisingAutoEncoder([nn.layers(1) nn.layers(2) nn.layers(1)]);
|
|
|
|
% I am building the greedyLayerBias
|
|
x = dmS.getX(1);
|
|
ae.greddyLayerWiseTrain(x(1, :), 1, 0.1);
|
|
% I am building the greedyLayerBias
|
|
|
|
agmmSourceDisc = AGMM();
|
|
agmmTargetGen = AGMM();
|
|
|
|
sourceSize = size(dmS.data, 1);
|
|
targetSize = size(dmT.data, 1);
|
|
sourceIndex = 0;
|
|
targetIndex = 0;
|
|
i = 0;
|
|
|
|
originalLearningRate = ae.learningRate;
|
|
epochs = 1;
|
|
while (sourceIndex + targetIndex) < (sourceSize + targetSize)
|
|
i = i + 1;
|
|
Xs = [];
|
|
ys = [];
|
|
Xt = [];
|
|
yt = [];
|
|
batchCount = 0;
|
|
while batchCount < 1000 && (sourceIndex + targetIndex) <= (sourceSize + targetSize)
|
|
ratio = (sourceSize - sourceIndex) / (sourceSize + targetSize - sourceIndex - targetIndex);
|
|
|
|
if (rand(1) <= ratio && sourceIndex < sourceSize) || (targetIndex >= targetSize && sourceIndex < sourceSize)
|
|
sourceIndex = sourceIndex + 1;
|
|
Xs = [Xs; dmS.getX(sourceIndex)];
|
|
ys = [ys; dmS.getY(sourceIndex)];
|
|
elseif targetIndex < targetSize
|
|
targetIndex = targetIndex + 1;
|
|
Xt = [Xt; dmT.getX(targetIndex)];
|
|
yt = [yt; dmT.getY(targetIndex)];
|
|
end
|
|
batchCount = batchCount + 1;
|
|
end
|
|
|
|
%% workaround
|
|
if size(Xs, 1) == 0
|
|
Xs = [Xs, dmS.getX(sourceSize)];
|
|
ys = [ys, dmS.getY(sourceSize)];
|
|
end
|
|
if size(Xt, 1) == 0
|
|
Xt = [Xt, dmT.getX(targetSize)];
|
|
yt = [yt, dmT.getY(targetSize)];
|
|
end
|
|
|
|
|
|
%% Evaluation ~ Test Target
|
|
tic
|
|
nn.test(Xt, yt);
|
|
crTarget(end + 1) = nn.classificationRate;
|
|
classificationLoss(end + 1) = nn.lossValue;
|
|
testTime(end + 1) = toc;
|
|
|
|
nn.test(Xs(max(Xs, [], 2) ~= 0, :), ys(max(Xs, [], 2) ~= 0, :));
|
|
crSource(end + 1) = nn.classificationRate;
|
|
discriminativeLoss(end + 1) = nn.lossValue;
|
|
|
|
ae.test(Xt);
|
|
generativeLossTarget(end + 1) = ae.lossValue;
|
|
|
|
if i > 1
|
|
nodeEvolutionTarget(end + 1) = nodeEvolutionTarget(i - 1);
|
|
nodeEvolutionSource(end + 1) = nodeEvolutionSource(i - 1);
|
|
else
|
|
nodeEvolutionTarget(end + 1) = 0;
|
|
nodeEvolutionSource(end + 1) = 0;
|
|
end
|
|
|
|
tic
|
|
for epoch = 1 : epochs
|
|
%% Discriminative phase on Source
|
|
nn.setAgmm(agmmSourceDisc);
|
|
for j = 1 : size(Xs, 1)
|
|
x = Xs(j, :);
|
|
y = ys(j, :);
|
|
if max(y) == 0
|
|
continue
|
|
end
|
|
|
|
lastHiddenLayerNo = numel(nn.layers) - 1;
|
|
|
|
nn.forwardpass(x);
|
|
if epoch == 1
|
|
agmmSourceDiscSize(end + 1) = nn.runAgmm(x, y).M();
|
|
nn.widthAdaptationStepwise(lastHiddenLayerNo, y);
|
|
else
|
|
nn.nSamplesFeed = nn.nSamplesFeed - 1;
|
|
nn.nSamplesLayer(lastHiddenLayerNo) = nn.nSamplesLayer(lastHiddenLayerNo) - 1;
|
|
nn.widthAdaptationStepwise(lastHiddenLayerNo, y);
|
|
nn.BIAS2{lastHiddenLayerNo}(end) = [];
|
|
nn.VAR{lastHiddenLayerNo}(end) = [];
|
|
end
|
|
|
|
if nn.growable(lastHiddenLayerNo)
|
|
nodeEvolutionSource(i) = nodeEvolutionSource(i) + nn.getAgmm().M();
|
|
for numberOfGMMs = 1 : nn.getAgmm().M()
|
|
nn.grow(lastHiddenLayerNo);
|
|
ae.grow(lastHiddenLayerNo);
|
|
end
|
|
elseif nn.prunable{lastHiddenLayerNo}(1) ~= 0
|
|
for k = size(nn.prunable{lastHiddenLayerNo}, 1) : -1 : 1
|
|
nodeToPrune = nn.prunable{lastHiddenLayerNo}(k);
|
|
ae.prune(lastHiddenLayerNo, nodeToPrune);
|
|
nn.prune(lastHiddenLayerNo, nodeToPrune);
|
|
nodeEvolutionSource(i) = nodeEvolutionSource(i) - 1;
|
|
end
|
|
end
|
|
nn.train(x, y);
|
|
|
|
end
|
|
for j = 1 : numel(nn.layers)-2
|
|
ae.weight{j} = nn.weight{j};
|
|
ae.bias{j} = nn.bias{j};
|
|
end
|
|
agmmSourceDisc = nn.getAgmm();
|
|
%% Generative phase on Target
|
|
ae.setAgmm(agmmTargetGen);
|
|
for j = 1 : size(Xt, 1)
|
|
x = Xt(j, :);
|
|
y = x;
|
|
lastHiddenLayerNo = numel(nn.layers) - 1;
|
|
|
|
ae.forwardpass(x);
|
|
if epoch == 1
|
|
agmmTargetGenSize(end + 1) = ae.runAgmm(x, y).M();
|
|
ae.widthAdaptationStepwise(lastHiddenLayerNo, y);
|
|
else
|
|
ae.nSamplesFeed = ae.nSamplesFeed - 1;
|
|
ae.nSamplesLayer(lastHiddenLayerNo) = ae.nSamplesLayer(lastHiddenLayerNo) - 1;
|
|
ae.widthAdaptationStepwise(lastHiddenLayerNo, y);
|
|
ae.BIAS2{lastHiddenLayerNo}(end) = [];
|
|
ae.VAR{lastHiddenLayerNo}(end) = [];
|
|
end
|
|
|
|
if ae.growable(lastHiddenLayerNo)
|
|
nodeEvolutionTarget(i) = nodeEvolutionTarget(i) + ae.getAgmm().M();
|
|
for numberOfGMMs = 1 : ae.getAgmm.M()
|
|
ae.grow(lastHiddenLayerNo);
|
|
nn.grow(lastHiddenLayerNo);
|
|
end
|
|
elseif ae.prunable{lastHiddenLayerNo}(1) ~= 0
|
|
for k = size(ae.prunable{lastHiddenLayerNo}, 1) : -1 : 1
|
|
nodeToPrune = ae.prunable{lastHiddenLayerNo}(k);
|
|
ae.prune(lastHiddenLayerNo, nodeToPrune);
|
|
nn.prune(lastHiddenLayerNo, nodeToPrune);
|
|
nodeEvolutionTarget(i) = nodeEvolutionTarget(i) - 1;
|
|
end
|
|
end
|
|
ae.greddyLayerWiseTrain(x, 1, 0.1);
|
|
end
|
|
for j = 1 : numel(ae.layers)-2
|
|
nn.weight{j} = ae.weight{j};
|
|
nn.bias{j} = ae.bias{j};
|
|
end
|
|
agmmTargetGen = ae.getAgmm();
|
|
|
|
% Kullback-Leibler Divergence
|
|
try
|
|
common = min(size(Xs,1), size(Xt,1));
|
|
KlLossEvolution(end + 1) = ae.updateWeightsByKullbackLeibler(Xs(1:common,:), Xt(1:common,:));
|
|
catch
|
|
KlLossEvolution(end + 1) = 0;
|
|
end
|
|
|
|
for j = 1 : numel(ae.layers)-2
|
|
nn.weight{j} = ae.weight{j};
|
|
nn.bias{j} = ae.bias{j};
|
|
end
|
|
end
|
|
if agmmSourceDisc.M() > 1
|
|
agmmSourceDisc.deleteCluster();
|
|
end
|
|
if agmmTargetGen.M() > 1
|
|
agmmTargetGen.deleteCluster();
|
|
end
|
|
trainTime(end + 1) = toc;
|
|
gmmTargetBatch(end + 1) = agmmTargetGen.M();
|
|
gmmSourceBatch(end + 1) = agmmSourceDisc.M();
|
|
|
|
%% Print metrics
|
|
nodeEvolution(i, :) = nn.layers(2 : end - 1);
|
|
|
|
if i == 2 || mod(i, round((sourceSize + targetSize)/1000/10)) == 0
|
|
fprintf('Minibatch: %d\n', i);
|
|
fprintf('Total of samples: %d Source | %d Target\n', size(Xs,1), size(Xt,1));
|
|
fprintf('Max Mean Min Now Accu Training time: %f %f %f %f %f\n', max(trainTime(1:i)), mean(trainTime(1:i)), min(trainTime(1:i)), trainTime(i), sum(trainTime(1:i)));
|
|
fprintf('Max Mean Min Now Accu Testing time: %f %f %f %f %f\n', max(testTime(1:i)), mean(testTime(1:i)), min(testTime(1:i)), testTime(i), sum(testTime(1:i)));
|
|
fprintf('Max Mean Min Now AGMM Source: %d %f %d %d\n', max(agmmSourceDiscSize), mean(agmmSourceDiscSize), min(agmmSourceDiscSize), agmmSourceDiscSize(end));
|
|
fprintf('Max Mean Min Now AGMM Target: %d %f %d %d\n', max(agmmTargetGenSize), mean(agmmTargetGenSize), min(agmmTargetGenSize), agmmTargetGenSize(end));
|
|
fprintf('Max Mean Min Now CR: %f%% %f%% %f%% %f%%\n', max(crTarget(2:i)) * 100., mean(crTarget(2:i)) * 100., min(crTarget(2:i)) * 100., crTarget(i) * 100.);
|
|
fprintf('Max Mean Min Now Classification Loss: %f %f %f %f\n', max(classificationLoss(2:i)), mean(classificationLoss(2:i)), min(classificationLoss(2:i)), classificationLoss(i));
|
|
fprintf('Max Mean Min Now KL: %f %f %f %f\n', max(KlLossEvolution(2:i)), mean(KlLossEvolution(2:i)), min(KlLossEvolution(2:i)), KlLossEvolution(i));
|
|
fprintf('Max Mean Min Now Nodes: %d %f %d %d\n', max(nodeEvolution(2:i)), mean(nodeEvolution(2:i)), min(nodeEvolution(2:i)), nodeEvolution(i));
|
|
fprintf('Network structure: %s (Discriminative) | %s (Generative)\n', num2str(nn.layers(:).'), num2str(ae.layers(:).'));
|
|
fprintf('\n');
|
|
end
|
|
end
|
|
|
|
fprintf('\n\n')
|
|
fprintf('Source CR: %f\n', mean(crSource(2:end)))
|
|
fprintf('Target CR: %f\n', mean(crTarget(2:end)))
|
|
fprintf('Training time: %f\n', sum(trainTime))
|
|
|
|
|
|
%% ---------------------------- Plotters ----------------------------------
|
|
function plotTime(trainTime, testTime)
|
|
figure('Name', 'Processing Time', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(max(trainTime), max(testTime)) * 1.1]);
|
|
xlim([1 size(trainTime, 2)]);
|
|
|
|
pTrain = plot(trainTime);
|
|
pTest = plot(testTime);
|
|
|
|
if max(trainTime) > 1
|
|
text(find(trainTime == max(trainTime(trainTime > 1)), 1), max(trainTime(trainTime > 1)),...
|
|
strcat('\leftarrow Max Train Time:', {' '}, string(max(trainTime(trainTime > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(trainTime == min(trainTime(trainTime > 1)), 1), min(trainTime(trainTime > 1)),...
|
|
strcat('\leftarrow Min Train Time:', {' '}, string(min(trainTime(trainTime > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
end
|
|
if max(testTime) > 1
|
|
text(find(testTime == max(testTime(testTime > 1)), 1), max(testTime(testTime > 1)),...
|
|
strcat('\leftarrow Max Test Time:', {' '}, string(max(testTime(testTime > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(testTime == min(testTime(testTime > 1)), 1), min(testTime(testTime > 1)),...
|
|
strcat('\leftarrow Min Test Time:', {' '}, string(min(testTime(testTime > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
end
|
|
|
|
legend([pTrain,...
|
|
pTest], [strcat('Train Time Mean | Accumulative:', {' '}, string(mean(trainTime)), {' | '}, string(sum(trainTime))),...
|
|
strcat('Test Time Mean | Accumulative:', {' '}, string(mean(testTime)), {' | '}, string(sum(testTime)))]);
|
|
|
|
|
|
ylabel('Time in seconds');
|
|
xlabel('Minibatches');
|
|
|
|
hold off
|
|
end
|
|
|
|
function plotNodeEvolution(nodeEvolution)
|
|
figure('Name', 'Node Evolution', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(nodeEvolution, [], 'all') * 1.1]);
|
|
xlim([1 size(nodeEvolution, 1)]);
|
|
|
|
plotArray = [];
|
|
legendArray = [];
|
|
for i = 1 : size(nodeEvolution, 2)
|
|
p = plot(nodeEvolution(:, i));
|
|
plotArray = [plotArray, p];
|
|
legendArray = [legendArray, strcat('HL', {' '}, string(i), {' '}, 'mean:', {' '}, string(mean(nodeEvolution(nodeEvolution(:, i) > 0, i))))];
|
|
|
|
text(find(nodeEvolution(:, i) == max(nodeEvolution(:, i)), 1), max(nodeEvolution(:, i)),...
|
|
strcat('\leftarrow Max nodes HL ', {' '}, string(i), ':', {' '}, string(max(nodeEvolution(:, i)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(nodeEvolution(:, i) == min(nodeEvolution(nodeEvolution(:, i) > 0, i)), 1), min(nodeEvolution(nodeEvolution(:, i) > 0, i)),...
|
|
strcat('\leftarrow Min nodes HL ', {' '}, string(i), ':', {' '}, string(min(nodeEvolution(nodeEvolution(:, i) > 0, i)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
end
|
|
|
|
ylabel('Number of nodes');
|
|
xlabel('Minibatches');
|
|
|
|
legend(plotArray, legendArray);
|
|
|
|
hold off
|
|
end
|
|
|
|
function plotAGMM(agmmSource, agmmTarget)
|
|
figure('Name', 'Number of GMMs on AGMMs', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(max(agmmTarget), max(agmmSource)) * 1.1]);
|
|
xlim([1 size(agmmSource, 2)]);
|
|
|
|
pAgmmSource = plot(agmmSource);
|
|
pAgmmTarget = plot(agmmTarget);
|
|
|
|
if max(agmmSource) > 1
|
|
text(find(agmmSource == max(agmmSource(agmmSource > 1)), 1), max(agmmSource(agmmSource > 1)),...
|
|
strcat('\leftarrow Max GMMs Source Discriminative:', {' '}, string(max(agmmSource(agmmSource > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(agmmSource == min(agmmSource(agmmSource > 1)), 1), min(agmmSource(agmmSource > 1)),...
|
|
strcat('\leftarrow Min GMMs Source Discriminative:', {' '}, string(min(agmmSource(agmmSource > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
end
|
|
if max(agmmTarget) > 1
|
|
text(find(agmmTarget == max(agmmTarget(agmmTarget > 1)), 1), max(agmmTarget(agmmTarget > 1)),...
|
|
strcat('\leftarrow Max GMMs Target Generative:', {' '}, string(max(agmmTarget(agmmTarget > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(agmmTarget == min(agmmTarget(agmmTarget > 1)), 1), min(agmmTarget(agmmTarget > 1)),...
|
|
strcat('\leftarrow Min GMMs Target Generative:', {' '}, string(min(agmmTarget(agmmTarget > 1)))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
end
|
|
|
|
legend([pAgmmSource,...
|
|
pAgmmTarget], [strcat('AGMM Source Discriminative Mean:', {' '}, string(mean(agmmSource))),...
|
|
strcat('AGMM Target Generative Mean:', {' '}, string(mean(agmmTarget)))]);
|
|
|
|
|
|
ylabel('Number of GMMs');
|
|
xlabel('Samples');
|
|
|
|
hold off
|
|
end
|
|
|
|
function plotLosses(classificationLoss, discriminativeLoss, generativeTargetLoss, kullbackLeiblerLoss)
|
|
figure('Name', 'Losses', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(max(kullbackLeiblerLoss), max(max(max(classificationLoss), max(discriminativeLoss)), max(generativeTargetLoss))) * 1.1]);
|
|
xlim([1 size(classificationLoss, 1)]);
|
|
|
|
pClassificationLoss = plot(classificationLoss);
|
|
pDiscriminativeLoss = plot(discriminativeLoss);
|
|
pGenerativeTargetLoss = plot(generativeTargetLoss);
|
|
pKullbackLeiblerLoss = plot(kullbackLeiblerLoss);
|
|
|
|
text(find(classificationLoss == max(classificationLoss), 1), max(classificationLoss),...
|
|
strcat('\leftarrow Max Classification Loss:', {' '}, string(max(classificationLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(classificationLoss == min(classificationLoss), 1), min(classificationLoss),...
|
|
strcat('\leftarrow Min Classification Loss:', {' '}, string(min(classificationLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
|
|
text(find(discriminativeLoss == max(discriminativeLoss), 1), max(discriminativeLoss),...
|
|
strcat('\leftarrow Max Discriminative Loss:', {' '}, string(max(discriminativeLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(discriminativeLoss == min(discriminativeLoss), 1), min(discriminativeLoss),...
|
|
strcat('\leftarrow Min Discriminative Loss:', {' '}, string(min(discriminativeLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
|
|
text(find(generativeTargetLoss == max(generativeTargetLoss), 1), max(generativeTargetLoss),...
|
|
strcat('\leftarrow Max Generative Target Loss:', {' '}, string(max(generativeTargetLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(generativeTargetLoss == min(generativeTargetLoss), 1), min(generativeTargetLoss),...
|
|
strcat('\leftarrow Min Generative Target Loss:', {' '}, string(min(generativeTargetLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
|
|
text(find(kullbackLeiblerLoss == max(kullbackLeiblerLoss), 1), max(kullbackLeiblerLoss),...
|
|
strcat('\leftarrow Max KL Div Loss:', {' '}, string(max(kullbackLeiblerLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(kullbackLeiblerLoss == min(kullbackLeiblerLoss), 1), min(kullbackLeiblerLoss),...
|
|
strcat('\leftarrow Min KL Div Loss:', {' '}, string(min(kullbackLeiblerLoss))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
|
|
ylabel('Loss Value');
|
|
xlabel('Minibatches');
|
|
|
|
legend([pClassificationLoss,...
|
|
pDiscriminativeLoss,...
|
|
pGenerativeTargetLoss,...
|
|
pKullbackLeiblerLoss], [strcat('Classification Loss Mean:', {' '}, string(mean(classificationLoss(2:end)))),...
|
|
strcat('Discriminative Loss Mean:', {' '}, string(mean(discriminativeLoss))),...
|
|
strcat('Generative Target Loss Mean:', {' '}, string(mean(generativeTargetLoss))),...
|
|
strcat('Kullback Leibler Divergence Loss Mean:', {' '}, string(mean(kullbackLeiblerLoss)))]);
|
|
|
|
hold off
|
|
end
|
|
|
|
function plotClassificationRate(source, target, nMinibatches)
|
|
figure('Name', 'Source and Target Classification Rates', 'NumberTitle', 'off');
|
|
hold on
|
|
ylim([0 max(max(source), max(target)) * 1.1]);
|
|
xlim([1 nMinibatches]);
|
|
|
|
niceBlue = [0 0.4470 0.7410];
|
|
niceYellow = [0.8500 0.3250 0.0980];
|
|
|
|
pSource = plot(source, 'Color', niceYellow, 'LineStyle', ':');
|
|
pTarget = plot(target, 'Color', niceBlue);
|
|
|
|
text(find(source == max(source), 1), max(source),...
|
|
strcat('\leftarrow Max Source:', {' '}, string(max(source))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(source == min(source), 1), min(source),...
|
|
strcat('\leftarrow Min Source:', {' '}, string(min(source))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(target == max(target), 1), max(target),...
|
|
strcat('\leftarrow Max Target:', {' '}, string(max(target))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
text(find(target == min(target), 1), min(target),...
|
|
strcat('\leftarrow Min Target:', {' '}, string(min(target))),...
|
|
'FontSize', 8,...
|
|
'Color', 'black');
|
|
|
|
ylabel('Classification Rate');
|
|
xlabel('Minibatches');
|
|
|
|
legend([pSource, pTarget], [strcat('Source Mean:', {' '}, string(mean(source(2:end)))),...
|
|
strcat('Target Mean:', {' '}, string(mean(target(2:end))))]);
|
|
|
|
hold off
|
|
|
|
end
|
|
|
|
function plotBIAS2andVAR(BIAS2, VAR)
|
|
sampleLayerCount = zeros(1, size(BIAS2, 2));
|
|
yAxisLim = 0;
|
|
bias2 = [];
|
|
var = [];
|
|
for i = 2 : size(BIAS2, 2)
|
|
sampleLayerCount(i) = sampleLayerCount(i - 1) + size(BIAS2{i}, 2);
|
|
for j = 1 : size(BIAS2{i}, 2)
|
|
bias2 = [bias2, BIAS2{i}(j)];
|
|
var = [var, VAR{i}(j)];
|
|
yAxisLim = max(yAxisLim, bias2(end) + var(end));
|
|
end
|
|
end
|
|
clear BIAS2 VAR
|
|
|
|
figure('Name', 'BIAS2, VAR, and NS', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(max(bias2), max(var)) * 1.1]);
|
|
xlim([1 size(bias2, 2)]);
|
|
|
|
p1 = plot(bias2);
|
|
p2 = plot(var);
|
|
p3 = plot(bias2 + var);
|
|
for j = 1: ceil(size(bias2, 2)/4) : size(bias2, 2)
|
|
if ~isnan(bias2(j))
|
|
text(j, bias2(j),...
|
|
strcat('\leftarrow', {' '}, 'BIAS2 =', {' '}, string(bias2(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(bias2, 2), bias2(end), string(bias2(end)));
|
|
|
|
for j = 1: ceil(size(var, 2)/4) : size(var, 2)
|
|
if ~isnan(var(j))
|
|
text(j, var(j),...
|
|
strcat('\leftarrow', {' '}, 'VAR =', {' '}, string(var(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(var, 2), var(end), string(var(end)));
|
|
|
|
for j = 1: ceil(size(var + bias2, 2)/4) : size(var + bias2, 2)
|
|
if ~isnan(var(j)) && ~isnan(bias2(j)) && ~isnan(var(j) + bias2(j))
|
|
text(j, var(j) + bias2(j),...
|
|
strcat('\leftarrow', {' '}, 'NS =', {' '}, string(var(j) + bias2(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(var + bias2, 2), var(end) + bias2(end), string(var(end) + bias2(end)));
|
|
|
|
for i = 2 : size(sampleLayerCount, 2) - 1
|
|
line([sampleLayerCount(i), sampleLayerCount(i)], [-yAxisLim * 2 yAxisLim * 2],...
|
|
'LineStyle', ':',...
|
|
'Color', 'magenta');
|
|
end
|
|
|
|
ylabel('Value');
|
|
xlabel('Sample');
|
|
|
|
legend([p1, p2, p3], [strcat('BIAS2 Mean:', {' '}, string(mean(bias2(2:end)))),...
|
|
strcat('VAR Mean:', {' '}, string(mean(var(2:end)))),...
|
|
strcat('NS Mean:', {' '}, string(mean(var(2:end) + bias2(2:end))))]);
|
|
hold off
|
|
end
|
|
|
|
function plotBIAS2andVARGen(BIAS2, VAR)
|
|
sampleLayerCount = zeros(1, size(BIAS2, 2));
|
|
yAxisLim = 0;
|
|
bias2 = [];
|
|
var = [];
|
|
for i = 2 : size(BIAS2, 2)
|
|
sampleLayerCount(i) = sampleLayerCount(i - 1) + size(BIAS2{i}, 2);
|
|
for j = 1 : size(BIAS2{i}, 2)
|
|
bias2 = [bias2, BIAS2{i}(j)];
|
|
var = [var, VAR{i}(j)];
|
|
yAxisLim = max(yAxisLim, bias2(end) + var(end));
|
|
end
|
|
end
|
|
clear BIAS2 VAR
|
|
|
|
figure('Name', 'BIAS2, VAR, and NS Generative', 'NumberTitle', 'off');
|
|
hold on
|
|
|
|
ylim([0 max(max(bias2), max(var)) * 1.1]);
|
|
xlim([1 size(bias2, 2)]);
|
|
|
|
p1 = plot(bias2);
|
|
p2 = plot(var);
|
|
p3 = plot(bias2 + var);
|
|
for j = 1: ceil(size(bias2, 2)/4) : size(bias2, 2)
|
|
if ~isnan(bias2(j))
|
|
text(j, bias2(j),...
|
|
strcat('\leftarrow', {' '}, 'BIAS2 =', {' '}, string(bias2(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(bias2, 2), bias2(end), string(bias2(end)));
|
|
|
|
for j = 1: ceil(size(var, 2)/4) : size(var, 2)
|
|
if ~isnan(var(j))
|
|
text(j, var(j),...
|
|
strcat('\leftarrow', {' '}, 'VAR =', {' '}, string(var(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(var, 2), var(end), string(var(end)));
|
|
|
|
for j = 1: ceil(size(var + bias2, 2)/4) : size(var + bias2, 2)
|
|
if ~isnan(var(j)) && ~isnan(bias2(j)) && ~isnan(var(j) + bias2(j))
|
|
text(j, var(j) + bias2(j),...
|
|
strcat('\leftarrow', {' '}, 'NS =', {' '}, string(var(j) + bias2(j))),...
|
|
'FontSize', 8);
|
|
end
|
|
end
|
|
text(size(var + bias2, 2), var(end) + bias2(end), string(var(end) + bias2(end)));
|
|
|
|
for i = 2 : size(sampleLayerCount, 2) - 1
|
|
line([sampleLayerCount(i), sampleLayerCount(i)], [-yAxisLim * 2 yAxisLim * 2],...
|
|
'LineStyle', ':',...
|
|
'Color', 'magenta');
|
|
end
|
|
|
|
ylabel('Value');
|
|
xlabel('Sample');
|
|
|
|
legend([p1, p2, p3], [strcat('BIAS2 Mean:', {' '}, string(mean(bias2))),...
|
|
strcat('VAR Mean:', {' '}, string(mean(var))),...
|
|
strcat('NS Mean:', {' '}, string(mean(var + bias2)))]);
|
|
hold off
|
|
end |