111 lines
3.8 KiB
Mathematica
111 lines
3.8 KiB
Mathematica
|
classdef ElasticNodes < handle
|
||
|
%ELASTICNODES It encapsulate global variables necessary for width
|
||
|
%adaptation
|
||
|
%
|
||
|
% This class enabless elastic network width. Network width adaptation
|
||
|
% supports automatic generation of new hidden nodes and prunning of
|
||
|
% inconsequential nodes. This mechanism is controlled by the NS
|
||
|
% (Network Significance) method which estimates the network
|
||
|
% generalization power in terms of bias and variance
|
||
|
properties (Access = public)
|
||
|
|
||
|
growable; % See full comment below
|
||
|
% Hold an array of boolean elements indicating if that layer can
|
||
|
% receive grow or not during width adaptation procedure
|
||
|
|
||
|
prunable; % See full comment below
|
||
|
% Hold an array of integer elements indicating if that layer can
|
||
|
% receive prune or not during width adaptation procedure.
|
||
|
% 0 indicates that no node should be pruned. Anything different
|
||
|
% than zero indicantes which node should be pruned in that layer.
|
||
|
end
|
||
|
properties (Access = public)
|
||
|
dataMean = 0;
|
||
|
dataStd = 0;
|
||
|
dataVar = 0;
|
||
|
|
||
|
nSamplesFeed = 0;
|
||
|
nSamplesLayer;
|
||
|
|
||
|
% NS = Network Significance
|
||
|
%BIAS VARIABLES
|
||
|
meanBIAS;
|
||
|
varBIAS;
|
||
|
stdBIAS;
|
||
|
minMeanBIAS;
|
||
|
minStdBIAS;
|
||
|
BIAS2;
|
||
|
%VAR VARIABLES
|
||
|
meanVAR;
|
||
|
varVAR;
|
||
|
stdVAR;
|
||
|
minMeanVAR;
|
||
|
minStdVAR;
|
||
|
VAR;
|
||
|
|
||
|
% metrics
|
||
|
nodeEvolution = {}; % TODO: Need to include at the grow/prune part
|
||
|
end
|
||
|
%% Evolving layers properties
|
||
|
properties (Access = public)
|
||
|
alpha = 0.005;
|
||
|
gradientBias = [];
|
||
|
meanNetBias2;
|
||
|
meanNetVar;
|
||
|
end
|
||
|
|
||
|
methods (Access = protected)
|
||
|
function self = ElasticNodes(nHiddenLayers)
|
||
|
nhl = nHiddenLayers; % readability
|
||
|
|
||
|
self.nSamplesLayer = zeros(1,nhl);
|
||
|
self.meanBIAS = zeros(1,nhl);
|
||
|
self.varBIAS = zeros(1,nhl);
|
||
|
self.stdBIAS = zeros(1,nhl);
|
||
|
self.minMeanBIAS = ones(1,nhl) * inf;
|
||
|
self.minStdBIAS = ones(1,nhl) * inf;
|
||
|
self.BIAS2 = num2cell(zeros(1,nhl));
|
||
|
|
||
|
self.meanVAR = zeros(1,nhl);
|
||
|
self.varVAR = zeros(1,nhl);
|
||
|
self.stdVAR = zeros(1,nhl);
|
||
|
self.minMeanVAR = ones(1,nhl) * inf;
|
||
|
self.minStdVAR = ones(1,nhl) * inf;
|
||
|
self.VAR = num2cell(zeros(1,nhl));
|
||
|
|
||
|
self.growable = zeros(1,nhl);
|
||
|
% self.prunable = zeros(1,nhl);
|
||
|
self.prunable = cell(1,nhl);
|
||
|
for i = 1 : nhl
|
||
|
self.prunable{i} = 0;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
function growLayerEvolutiveParameter(self, numberHiddenLayers)
|
||
|
nhl = numberHiddenLayers; %readability
|
||
|
|
||
|
self.nSamplesLayer = [self.nSamplesLayer, 0];
|
||
|
self.meanBIAS = [self.meanBIAS, 0];
|
||
|
self.varBIAS = [self.varBIAS, 0];
|
||
|
self.stdBIAS = [self.stdBIAS, 0];
|
||
|
self.minMeanBIAS = [self.minMeanBIAS, 0];
|
||
|
self.minStdBIAS = [self.minStdBIAS, 0];
|
||
|
self.BIAS2 = [self.BIAS2, 0];
|
||
|
|
||
|
self.meanVAR = [self.meanVAR, 0];
|
||
|
self.varVAR = [self.varVAR, 0];
|
||
|
self.stdVAR = [self.stdVAR, 0];
|
||
|
self.minMeanVAR = [self.minMeanVAR, 0];
|
||
|
self.minStdVAR = [self.minStdVAR, 0];
|
||
|
self.VAR = [self.VAR, 0];
|
||
|
|
||
|
self.growable = zeros(1, nhl + 1);
|
||
|
self.prunable = cell(1, nhl + 1);
|
||
|
for i = 1 : nhl + 1
|
||
|
self.prunable{i} = 0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|