ACDC_KNOSYS-2021/ATL/ElasticNodes.m

111 lines
3.8 KiB
Mathematica
Raw Normal View History

2021-10-04 18:31:00 +08:00
classdef ElasticNodes < handle
%ELASTICNODES It encapsulate global variables necessary for width
%adaptation
%
% This class enabless elastic network width. Network width adaptation
% supports automatic generation of new hidden nodes and prunning of
% inconsequential nodes. This mechanism is controlled by the NS
% (Network Significance) method which estimates the network
% generalization power in terms of bias and variance
properties (Access = public)
growable; % See full comment below
% Hold an array of boolean elements indicating if that layer can
% receive grow or not during width adaptation procedure
prunable; % See full comment below
% Hold an array of integer elements indicating if that layer can
% receive prune or not during width adaptation procedure.
% 0 indicates that no node should be pruned. Anything different
% than zero indicantes which node should be pruned in that layer.
end
properties (Access = public)
dataMean = 0;
dataStd = 0;
dataVar = 0;
nSamplesFeed = 0;
nSamplesLayer;
% NS = Network Significance
%BIAS VARIABLES
meanBIAS;
varBIAS;
stdBIAS;
minMeanBIAS;
minStdBIAS;
BIAS2;
%VAR VARIABLES
meanVAR;
varVAR;
stdVAR;
minMeanVAR;
minStdVAR;
VAR;
% metrics
nodeEvolution = {}; % TODO: Need to include at the grow/prune part
end
%% Evolving layers properties
properties (Access = public)
alpha = 0.005;
gradientBias = [];
meanNetBias2;
meanNetVar;
end
methods (Access = protected)
function self = ElasticNodes(nHiddenLayers)
nhl = nHiddenLayers; % readability
self.nSamplesLayer = zeros(1,nhl);
self.meanBIAS = zeros(1,nhl);
self.varBIAS = zeros(1,nhl);
self.stdBIAS = zeros(1,nhl);
self.minMeanBIAS = ones(1,nhl) * inf;
self.minStdBIAS = ones(1,nhl) * inf;
self.BIAS2 = num2cell(zeros(1,nhl));
self.meanVAR = zeros(1,nhl);
self.varVAR = zeros(1,nhl);
self.stdVAR = zeros(1,nhl);
self.minMeanVAR = ones(1,nhl) * inf;
self.minStdVAR = ones(1,nhl) * inf;
self.VAR = num2cell(zeros(1,nhl));
self.growable = zeros(1,nhl);
% self.prunable = zeros(1,nhl);
self.prunable = cell(1,nhl);
for i = 1 : nhl
self.prunable{i} = 0;
end
end
function growLayerEvolutiveParameter(self, numberHiddenLayers)
nhl = numberHiddenLayers; %readability
self.nSamplesLayer = [self.nSamplesLayer, 0];
self.meanBIAS = [self.meanBIAS, 0];
self.varBIAS = [self.varBIAS, 0];
self.stdBIAS = [self.stdBIAS, 0];
self.minMeanBIAS = [self.minMeanBIAS, 0];
self.minStdBIAS = [self.minStdBIAS, 0];
self.BIAS2 = [self.BIAS2, 0];
self.meanVAR = [self.meanVAR, 0];
self.varVAR = [self.varVAR, 0];
self.stdVAR = [self.stdVAR, 0];
self.minMeanVAR = [self.minMeanVAR, 0];
self.minStdVAR = [self.minStdVAR, 0];
self.VAR = [self.VAR, 0];
self.growable = zeros(1, nhl + 1);
self.prunable = cell(1, nhl + 1);
for i = 1 : nhl + 1
self.prunable{i} = 0;
end
end
end
end