338 lines
10 KiB
Python
338 lines
10 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
from ctypes import *
|
||
|
from ctypes.util import find_library
|
||
|
from os import path
|
||
|
import sys
|
||
|
|
||
|
__all__ = ['libsvm', 'svm_problem', 'svm_parameter',
|
||
|
'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'C_SVC',
|
||
|
'EPSILON_SVR', 'LINEAR', 'NU_SVC', 'NU_SVR', 'ONE_CLASS',
|
||
|
'POLY', 'PRECOMPUTED', 'PRINT_STRING_FUN', 'RBF',
|
||
|
'SIGMOID', 'c_double', 'svm_model']
|
||
|
|
||
|
try:
|
||
|
dirname = path.dirname(path.abspath(__file__))
|
||
|
if sys.platform == 'win32':
|
||
|
#libsvm = CDLL(path.join(dirname, r'..\windows\libsvm.dll'))
|
||
|
libsvm = CDLL(path.join(dirname, r'libsvm-weights-3.20\libsvm.dll'))
|
||
|
else:
|
||
|
#libsvm = CDLL(path.join(dirname, '../libsvm.so.2'))
|
||
|
libsvm = CDLL(path.join(dirname, 'libsvm-weights-3.20/libsvm.so.2'))
|
||
|
except:
|
||
|
# For unix the prefix 'lib' is not considered.
|
||
|
if find_library('svm'):
|
||
|
libsvm = CDLL(find_library('svm'))
|
||
|
elif find_library('libsvm'):
|
||
|
libsvm = CDLL(find_library('libsvm'))
|
||
|
else:
|
||
|
raise Exception('LIBSVM library not found.')
|
||
|
|
||
|
C_SVC = 0
|
||
|
NU_SVC = 1
|
||
|
ONE_CLASS = 2
|
||
|
EPSILON_SVR = 3
|
||
|
NU_SVR = 4
|
||
|
|
||
|
LINEAR = 0
|
||
|
POLY = 1
|
||
|
RBF = 2
|
||
|
SIGMOID = 3
|
||
|
PRECOMPUTED = 4
|
||
|
|
||
|
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
|
||
|
def print_null(s):
|
||
|
return
|
||
|
|
||
|
def genFields(names, types):
|
||
|
return list(zip(names, types))
|
||
|
|
||
|
def fillprototype(f, restype, argtypes):
|
||
|
f.restype = restype
|
||
|
f.argtypes = argtypes
|
||
|
|
||
|
class svm_node(Structure):
|
||
|
_names = ["index", "value"]
|
||
|
_types = [c_int, c_double]
|
||
|
_fields_ = genFields(_names, _types)
|
||
|
|
||
|
def __str__(self):
|
||
|
return '%d:%g' % (self.index, self.value)
|
||
|
|
||
|
def gen_svm_nodearray(xi, feature_max=None, isKernel=None):
|
||
|
if isinstance(xi, dict):
|
||
|
index_range = xi.keys()
|
||
|
elif isinstance(xi, (list, tuple)):
|
||
|
if not isKernel:
|
||
|
xi = [0] + xi # idx should start from 1
|
||
|
index_range = range(len(xi))
|
||
|
else:
|
||
|
raise TypeError('xi should be a dictionary, list or tuple')
|
||
|
|
||
|
if feature_max:
|
||
|
assert(isinstance(feature_max, int))
|
||
|
index_range = filter(lambda j: j <= feature_max, index_range)
|
||
|
if not isKernel:
|
||
|
index_range = filter(lambda j:xi[j] != 0, index_range)
|
||
|
|
||
|
index_range = sorted(index_range)
|
||
|
ret = (svm_node * (len(index_range)+1))()
|
||
|
ret[-1].index = -1
|
||
|
for idx, j in enumerate(index_range):
|
||
|
ret[idx].index = j
|
||
|
ret[idx].value = xi[j]
|
||
|
max_idx = 0
|
||
|
if index_range:
|
||
|
max_idx = index_range[-1]
|
||
|
return ret, max_idx
|
||
|
|
||
|
class svm_problem(Structure):
|
||
|
_names = ["l", "y", "x", "W"]
|
||
|
_types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node)), POINTER(c_double)]
|
||
|
_fields_ = genFields(_names, _types)
|
||
|
|
||
|
def __init__(self, W, y, x, isKernel=None):
|
||
|
if len(y) != len(x):
|
||
|
raise ValueError("len(y) != len(x)")
|
||
|
if len(W) != 0 and len(W) != len(x):
|
||
|
raise ValueError("len(W) != len(x)")
|
||
|
self.l = l = len(y)
|
||
|
if len(W) == 0:
|
||
|
W = [1] * l
|
||
|
|
||
|
max_idx = 0
|
||
|
x_space = self.x_space = []
|
||
|
for i, xi in enumerate(x):
|
||
|
tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel)
|
||
|
x_space += [tmp_xi]
|
||
|
max_idx = max(max_idx, tmp_idx)
|
||
|
self.n = max_idx
|
||
|
|
||
|
self.W = (c_double * l)()
|
||
|
for i, Wi in enumerate(W): self.W[i] = Wi
|
||
|
|
||
|
self.y = (c_double * l)()
|
||
|
for i, yi in enumerate(y): self.y[i] = yi
|
||
|
|
||
|
self.x = (POINTER(svm_node) * l)()
|
||
|
for i, xi in enumerate(self.x_space): self.x[i] = xi
|
||
|
|
||
|
class svm_parameter(Structure):
|
||
|
_names = ["svm_type", "kernel_type", "degree", "gamma", "coef0",
|
||
|
"cache_size", "eps", "C", "nr_weight", "weight_label", "weight",
|
||
|
"nu", "p", "shrinking", "probability"]
|
||
|
_types = [c_int, c_int, c_int, c_double, c_double,
|
||
|
c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double),
|
||
|
c_double, c_double, c_int, c_int]
|
||
|
_fields_ = genFields(_names, _types)
|
||
|
|
||
|
def __init__(self, options = None):
|
||
|
if options == None:
|
||
|
options = ''
|
||
|
self.parse_options(options)
|
||
|
|
||
|
def __str__(self):
|
||
|
s = ''
|
||
|
attrs = svm_parameter._names + list(self.__dict__.keys())
|
||
|
values = map(lambda attr: getattr(self, attr), attrs)
|
||
|
for attr, val in zip(attrs, values):
|
||
|
s += (' %s: %s\n' % (attr, val))
|
||
|
s = s.strip()
|
||
|
|
||
|
return s
|
||
|
|
||
|
def set_to_default_values(self):
|
||
|
self.svm_type = C_SVC;
|
||
|
self.kernel_type = RBF
|
||
|
self.degree = 3
|
||
|
self.gamma = 0
|
||
|
self.coef0 = 0
|
||
|
self.nu = 0.5
|
||
|
self.cache_size = 100
|
||
|
self.C = 1
|
||
|
self.eps = 0.001
|
||
|
self.p = 0.1
|
||
|
self.shrinking = 1
|
||
|
self.probability = 0
|
||
|
self.nr_weight = 0
|
||
|
self.weight_label = (c_int*0)()
|
||
|
self.weight = (c_double*0)()
|
||
|
self.cross_validation = False
|
||
|
self.nr_fold = 0
|
||
|
self.print_func = cast(None, PRINT_STRING_FUN)
|
||
|
|
||
|
def parse_options(self, options):
|
||
|
if isinstance(options, list):
|
||
|
argv = options
|
||
|
elif isinstance(options, str):
|
||
|
argv = options.split()
|
||
|
else:
|
||
|
raise TypeError("arg 1 should be a list or a str.")
|
||
|
self.set_to_default_values()
|
||
|
self.print_func = cast(None, PRINT_STRING_FUN)
|
||
|
weight_label = []
|
||
|
weight = []
|
||
|
|
||
|
i = 0
|
||
|
while i < len(argv):
|
||
|
if argv[i] == "-s":
|
||
|
i = i + 1
|
||
|
self.svm_type = int(argv[i])
|
||
|
elif argv[i] == "-t":
|
||
|
i = i + 1
|
||
|
self.kernel_type = int(argv[i])
|
||
|
elif argv[i] == "-d":
|
||
|
i = i + 1
|
||
|
self.degree = int(argv[i])
|
||
|
elif argv[i] == "-g":
|
||
|
i = i + 1
|
||
|
self.gamma = float(argv[i])
|
||
|
elif argv[i] == "-r":
|
||
|
i = i + 1
|
||
|
self.coef0 = float(argv[i])
|
||
|
elif argv[i] == "-n":
|
||
|
i = i + 1
|
||
|
self.nu = float(argv[i])
|
||
|
elif argv[i] == "-m":
|
||
|
i = i + 1
|
||
|
self.cache_size = float(argv[i])
|
||
|
elif argv[i] == "-c":
|
||
|
i = i + 1
|
||
|
self.C = float(argv[i])
|
||
|
elif argv[i] == "-e":
|
||
|
i = i + 1
|
||
|
self.eps = float(argv[i])
|
||
|
elif argv[i] == "-p":
|
||
|
i = i + 1
|
||
|
self.p = float(argv[i])
|
||
|
elif argv[i] == "-h":
|
||
|
i = i + 1
|
||
|
self.shrinking = int(argv[i])
|
||
|
elif argv[i] == "-b":
|
||
|
i = i + 1
|
||
|
self.probability = int(argv[i])
|
||
|
elif argv[i] == "-q":
|
||
|
self.print_func = PRINT_STRING_FUN(print_null)
|
||
|
elif argv[i] == "-v":
|
||
|
i = i + 1
|
||
|
self.cross_validation = 1
|
||
|
self.nr_fold = int(argv[i])
|
||
|
if self.nr_fold < 2:
|
||
|
raise ValueError("n-fold cross validation: n must >= 2")
|
||
|
elif argv[i].startswith("-w"):
|
||
|
i = i + 1
|
||
|
self.nr_weight += 1
|
||
|
nr_weight = self.nr_weight
|
||
|
weight_label += [int(argv[i-1][2:])]
|
||
|
weight += [float(argv[i])]
|
||
|
else:
|
||
|
raise ValueError("Wrong options")
|
||
|
i += 1
|
||
|
|
||
|
libsvm.svm_set_print_string_function(self.print_func)
|
||
|
self.weight_label = (c_int*self.nr_weight)()
|
||
|
self.weight = (c_double*self.nr_weight)()
|
||
|
for i in range(self.nr_weight):
|
||
|
self.weight[i] = weight[i]
|
||
|
self.weight_label[i] = weight_label[i]
|
||
|
|
||
|
class svm_model(Structure):
|
||
|
_names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho',
|
||
|
'probA', 'probB', 'sv_indices', 'label', 'nSV', 'free_sv']
|
||
|
_types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)),
|
||
|
POINTER(POINTER(c_double)), POINTER(c_double),
|
||
|
POINTER(c_double), POINTER(c_double), POINTER(c_int),
|
||
|
POINTER(c_int), POINTER(c_int), c_int]
|
||
|
_fields_ = genFields(_names, _types)
|
||
|
|
||
|
def __init__(self):
|
||
|
self.__createfrom__ = 'python'
|
||
|
|
||
|
def __del__(self):
|
||
|
# free memory created by C to avoid memory leak
|
||
|
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
|
||
|
libsvm.svm_free_and_destroy_model(pointer(self))
|
||
|
|
||
|
def get_svm_type(self):
|
||
|
return libsvm.svm_get_svm_type(self)
|
||
|
|
||
|
def get_nr_class(self):
|
||
|
return libsvm.svm_get_nr_class(self)
|
||
|
|
||
|
def get_svr_probability(self):
|
||
|
return libsvm.svm_get_svr_probability(self)
|
||
|
|
||
|
def get_labels(self):
|
||
|
nr_class = self.get_nr_class()
|
||
|
labels = (c_int * nr_class)()
|
||
|
libsvm.svm_get_labels(self, labels)
|
||
|
return labels[:nr_class]
|
||
|
|
||
|
def get_sv_indices(self):
|
||
|
total_sv = self.get_nr_sv()
|
||
|
sv_indices = (c_int * total_sv)()
|
||
|
libsvm.svm_get_sv_indices(self, sv_indices)
|
||
|
return sv_indices[:total_sv]
|
||
|
|
||
|
def get_nr_sv(self):
|
||
|
return libsvm.svm_get_nr_sv(self)
|
||
|
|
||
|
def is_probability_model(self):
|
||
|
return (libsvm.svm_check_probability_model(self) == 1)
|
||
|
|
||
|
def get_sv_coef(self):
|
||
|
return [tuple(self.sv_coef[j][i] for j in xrange(self.nr_class - 1))
|
||
|
for i in xrange(self.l)]
|
||
|
|
||
|
def get_SV(self):
|
||
|
result = []
|
||
|
for sparse_sv in self.SV[:self.l]:
|
||
|
row = dict()
|
||
|
|
||
|
i = 0
|
||
|
while True:
|
||
|
row[sparse_sv[i].index] = sparse_sv[i].value
|
||
|
if sparse_sv[i].index == -1:
|
||
|
break
|
||
|
i += 1
|
||
|
|
||
|
result.append(row)
|
||
|
return result
|
||
|
|
||
|
def toPyModel(model_ptr):
|
||
|
"""
|
||
|
toPyModel(model_ptr) -> svm_model
|
||
|
|
||
|
Convert a ctypes POINTER(svm_model) to a Python svm_model
|
||
|
"""
|
||
|
if bool(model_ptr) == False:
|
||
|
raise ValueError("Null pointer")
|
||
|
m = model_ptr.contents
|
||
|
m.__createfrom__ = 'C'
|
||
|
return m
|
||
|
|
||
|
fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)])
|
||
|
fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)])
|
||
|
|
||
|
fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p])
|
||
|
|
||
|
fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)])
|
||
|
fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)])
|
||
|
fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)])
|
||
|
|
||
|
fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
|
||
|
fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)])
|
||
|
fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
|
||
|
|
||
|
fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))])
|
||
|
fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)])
|
||
|
|
||
|
fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)])
|
||
|
fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)])
|
||
|
fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN])
|