525 lines
13 KiB
C
525 lines
13 KiB
C
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <ctype.h>
|
||
|
#include "../svm.h"
|
||
|
|
||
|
#include "mex.h"
|
||
|
#include "svm_model_matlab.h"
|
||
|
|
||
|
#ifdef MX_API_VER
|
||
|
#if MX_API_VER < 0x07030000
|
||
|
typedef int mwIndex;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#define CMD_LEN 2048
|
||
|
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
|
||
|
|
||
|
void print_null(const char *s) {}
|
||
|
void print_string_matlab(const char *s) {mexPrintf(s);}
|
||
|
|
||
|
void exit_with_help()
|
||
|
{
|
||
|
mexPrintf(
|
||
|
"Usage: model = svmtrain(training_weight_vector, training_label_vector, training_instance_matrix, 'libsvm_options');\n"
|
||
|
"libsvm_options:\n"
|
||
|
"-s svm_type : set type of SVM (default 0)\n"
|
||
|
" 0 -- C-SVC (multi-class classification)\n"
|
||
|
" 1 -- nu-SVC (multi-class classification)\n"
|
||
|
" 2 -- one-class SVM\n"
|
||
|
" 3 -- epsilon-SVR (regression)\n"
|
||
|
" 4 -- nu-SVR (regression)\n"
|
||
|
"-t kernel_type : set type of kernel function (default 2)\n"
|
||
|
" 0 -- linear: u'*v\n"
|
||
|
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
|
||
|
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
|
||
|
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
|
||
|
" 4 -- precomputed kernel (kernel values in training_instance_matrix)\n"
|
||
|
"-d degree : set degree in kernel function (default 3)\n"
|
||
|
"-g gamma : set gamma in kernel function (default 1/num_features)\n"
|
||
|
"-r coef0 : set coef0 in kernel function (default 0)\n"
|
||
|
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
|
||
|
"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
|
||
|
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
|
||
|
"-m cachesize : set cache memory size in MB (default 100)\n"
|
||
|
"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
|
||
|
"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
|
||
|
"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
|
||
|
"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
|
||
|
"-v n : n-fold cross validation mode\n"
|
||
|
"-q : quiet mode (no outputs)\n"
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// svm arguments
|
||
|
struct svm_parameter param; // set by parse_command_line
|
||
|
struct svm_problem prob; // set by read_problem
|
||
|
struct svm_model *model;
|
||
|
struct svm_node *x_space;
|
||
|
int cross_validation;
|
||
|
int nr_fold;
|
||
|
|
||
|
|
||
|
double do_cross_validation()
|
||
|
{
|
||
|
int i;
|
||
|
int total_correct = 0;
|
||
|
double total_error = 0;
|
||
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
||
|
double *target = Malloc(double,prob.l);
|
||
|
double retval = 0.0;
|
||
|
|
||
|
svm_cross_validation(&prob,¶m,nr_fold,target);
|
||
|
if(param.svm_type == EPSILON_SVR ||
|
||
|
param.svm_type == NU_SVR)
|
||
|
{
|
||
|
for(i=0;i<prob.l;i++)
|
||
|
{
|
||
|
double y = prob.y[i];
|
||
|
double v = target[i];
|
||
|
total_error += (v-y)*(v-y);
|
||
|
sumv += v;
|
||
|
sumy += y;
|
||
|
sumvv += v*v;
|
||
|
sumyy += y*y;
|
||
|
sumvy += v*y;
|
||
|
}
|
||
|
mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
|
||
|
mexPrintf("Cross Validation Squared correlation coefficient = %g\n",
|
||
|
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
|
||
|
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
|
||
|
);
|
||
|
retval = total_error/prob.l;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for(i=0;i<prob.l;i++)
|
||
|
if(target[i] == prob.y[i])
|
||
|
++total_correct;
|
||
|
mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
|
||
|
retval = 100.0*total_correct/prob.l;
|
||
|
}
|
||
|
free(target);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
// nrhs should be 4
|
||
|
int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name)
|
||
|
{
|
||
|
int i, argc = 1;
|
||
|
char cmd[CMD_LEN];
|
||
|
char *argv[CMD_LEN/2];
|
||
|
void (*print_func)(const char *) = print_string_matlab; // default printing to stdout
|
||
|
|
||
|
// default values
|
||
|
param.svm_type = C_SVC;
|
||
|
param.kernel_type = RBF;
|
||
|
param.degree = 3;
|
||
|
param.gamma = 0; // 1/num_features
|
||
|
param.coef0 = 0;
|
||
|
param.nu = 0.5;
|
||
|
param.cache_size = 100;
|
||
|
param.C = 1;
|
||
|
param.eps = 1e-3;
|
||
|
param.p = 0.1;
|
||
|
param.shrinking = 1;
|
||
|
param.probability = 0;
|
||
|
param.nr_weight = 0;
|
||
|
param.weight_label = NULL;
|
||
|
param.weight = NULL;
|
||
|
cross_validation = 0;
|
||
|
|
||
|
if(nrhs <= 1)
|
||
|
return 1;
|
||
|
|
||
|
if(nrhs > 3)
|
||
|
{
|
||
|
// put options in argv[]
|
||
|
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1);
|
||
|
if((argv[argc] = strtok(cmd, " ")) != NULL)
|
||
|
while((argv[++argc] = strtok(NULL, " ")) != NULL)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
// parse options
|
||
|
for(i=1;i<argc;i++)
|
||
|
{
|
||
|
if(argv[i][0] != '-') break;
|
||
|
++i;
|
||
|
if(i>=argc && argv[i-1][1] != 'q') // since option -q has no parameter
|
||
|
return 1;
|
||
|
switch(argv[i-1][1])
|
||
|
{
|
||
|
case 's':
|
||
|
param.svm_type = atoi(argv[i]);
|
||
|
break;
|
||
|
case 't':
|
||
|
param.kernel_type = atoi(argv[i]);
|
||
|
break;
|
||
|
case 'd':
|
||
|
param.degree = atoi(argv[i]);
|
||
|
break;
|
||
|
case 'g':
|
||
|
param.gamma = atof(argv[i]);
|
||
|
break;
|
||
|
case 'r':
|
||
|
param.coef0 = atof(argv[i]);
|
||
|
break;
|
||
|
case 'n':
|
||
|
param.nu = atof(argv[i]);
|
||
|
break;
|
||
|
case 'm':
|
||
|
param.cache_size = atof(argv[i]);
|
||
|
break;
|
||
|
case 'c':
|
||
|
param.C = atof(argv[i]);
|
||
|
break;
|
||
|
case 'e':
|
||
|
param.eps = atof(argv[i]);
|
||
|
break;
|
||
|
case 'p':
|
||
|
param.p = atof(argv[i]);
|
||
|
break;
|
||
|
case 'h':
|
||
|
param.shrinking = atoi(argv[i]);
|
||
|
break;
|
||
|
case 'b':
|
||
|
param.probability = atoi(argv[i]);
|
||
|
break;
|
||
|
case 'q':
|
||
|
print_func = &print_null;
|
||
|
i--;
|
||
|
break;
|
||
|
case 'v':
|
||
|
cross_validation = 1;
|
||
|
nr_fold = atoi(argv[i]);
|
||
|
if(nr_fold < 2)
|
||
|
{
|
||
|
mexPrintf("n-fold cross validation: n must >= 2\n");
|
||
|
return 1;
|
||
|
}
|
||
|
break;
|
||
|
case 'w':
|
||
|
++param.nr_weight;
|
||
|
param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
|
||
|
param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
|
||
|
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
|
||
|
param.weight[param.nr_weight-1] = atof(argv[i]);
|
||
|
break;
|
||
|
default:
|
||
|
mexPrintf("Unknown option -%c\n", argv[i-1][1]);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
svm_set_print_string_function(print_func);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// read in a problem (in svmlight format)
|
||
|
int read_problem_dense(const mxArray *weight_vec, const mxArray *label_vec, const mxArray *instance_mat)
|
||
|
{
|
||
|
size_t i, j, k, l;
|
||
|
size_t elements, max_index, sc, label_vector_row_num, weight_vector_row_num;
|
||
|
double *samples, *labels, *weights;
|
||
|
|
||
|
prob.x = NULL;
|
||
|
prob.y = NULL;
|
||
|
prob.W = NULL;
|
||
|
x_space = NULL;
|
||
|
|
||
|
weights = mxGetPr(weight_vec);
|
||
|
labels = mxGetPr(label_vec);
|
||
|
samples = mxGetPr(instance_mat);
|
||
|
sc = mxGetN(instance_mat);
|
||
|
|
||
|
elements = 0;
|
||
|
// the number of instance
|
||
|
l = mxGetM(instance_mat);
|
||
|
prob.l = (int)l;
|
||
|
weight_vector_row_num = mxGetM(weight_vec);
|
||
|
label_vector_row_num = mxGetM(label_vec);
|
||
|
|
||
|
if(weight_vector_row_num == 0)
|
||
|
mexPrintf("Warning: treat each instance with weight 1.0\n");
|
||
|
else if(weight_vector_row_num!=prob.l)
|
||
|
{
|
||
|
mexPrintf("Length of weight vector does not match # of instances.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
if(label_vector_row_num!=l)
|
||
|
{
|
||
|
mexPrintf("Length of label vector does not match # of instances.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if(param.kernel_type == PRECOMPUTED)
|
||
|
elements = l * (sc + 1);
|
||
|
else
|
||
|
{
|
||
|
for(i = 0; i < l; i++)
|
||
|
{
|
||
|
for(k = 0; k < sc; k++)
|
||
|
if(samples[k * l + i] != 0)
|
||
|
elements++;
|
||
|
// count the '-1' element
|
||
|
elements++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
prob.y = Malloc(double,l);
|
||
|
prob.x = Malloc(struct svm_node *,l);
|
||
|
prob.W = Malloc(double,l);
|
||
|
x_space = Malloc(struct svm_node, elements);
|
||
|
|
||
|
max_index = sc;
|
||
|
j = 0;
|
||
|
for(i = 0; i < l; i++)
|
||
|
{
|
||
|
prob.x[i] = &x_space[j];
|
||
|
prob.y[i] = labels[i];
|
||
|
prob.W[i] = 1;
|
||
|
if(weight_vector_row_num == prob.l)
|
||
|
prob.W[i] *= (double) weights[i];
|
||
|
|
||
|
for(k = 0; k < sc; k++)
|
||
|
{
|
||
|
if(param.kernel_type == PRECOMPUTED || samples[k * l + i] != 0)
|
||
|
{
|
||
|
x_space[j].index = (int)k + 1;
|
||
|
x_space[j].value = samples[k * l + i];
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
x_space[j++].index = -1;
|
||
|
}
|
||
|
|
||
|
if(param.gamma == 0 && max_index > 0)
|
||
|
param.gamma = (double)(1.0/max_index);
|
||
|
|
||
|
if(param.kernel_type == PRECOMPUTED)
|
||
|
for(i=0;i<l;i++)
|
||
|
{
|
||
|
if((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > (int)max_index)
|
||
|
{
|
||
|
mexPrintf("Wrong input format: sample_serial_number out of range\n");
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int read_problem_sparse(const mxArray *weight_vec, const mxArray *label_vec, const mxArray *instance_mat)
|
||
|
{
|
||
|
mwIndex *ir, *jc, low, high, k;
|
||
|
// using size_t due to the output type of matlab functions
|
||
|
size_t i, j, l, elements, max_index, label_vector_row_num, weight_vector_row_num;
|
||
|
mwSize num_samples;
|
||
|
double *samples, *labels, *weights;
|
||
|
mxArray *instance_mat_col; // transposed instance sparse matrix
|
||
|
|
||
|
prob.x = NULL;
|
||
|
prob.y = NULL;
|
||
|
prob.W = NULL;
|
||
|
x_space = NULL;
|
||
|
|
||
|
// transpose instance matrix
|
||
|
{
|
||
|
mxArray *prhs[1], *plhs[1];
|
||
|
prhs[0] = mxDuplicateArray(instance_mat);
|
||
|
if(mexCallMATLAB(1, plhs, 1, prhs, "transpose"))
|
||
|
{
|
||
|
mexPrintf("Error: cannot transpose training instance matrix\n");
|
||
|
return -1;
|
||
|
}
|
||
|
instance_mat_col = plhs[0];
|
||
|
mxDestroyArray(prhs[0]);
|
||
|
}
|
||
|
|
||
|
// each column is one instance
|
||
|
weights = mxGetPr(weight_vec);
|
||
|
labels = mxGetPr(label_vec);
|
||
|
samples = mxGetPr(instance_mat_col);
|
||
|
ir = mxGetIr(instance_mat_col);
|
||
|
jc = mxGetJc(instance_mat_col);
|
||
|
|
||
|
num_samples = mxGetNzmax(instance_mat_col);
|
||
|
|
||
|
// the number of instance
|
||
|
l = mxGetN(instance_mat_col);
|
||
|
prob.l = (int) l;
|
||
|
label_vector_row_num = mxGetM(label_vec);
|
||
|
weight_vector_row_num = mxGetM(weight_vec);
|
||
|
|
||
|
if(weight_vector_row_num == 0)
|
||
|
mexPrintf("Warning: treat each instance with weight 1.0\n");
|
||
|
else if(weight_vector_row_num!=prob.l)
|
||
|
{
|
||
|
mexPrintf("Length of weight vector does not match # of instances.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
if(label_vector_row_num!=l)
|
||
|
{
|
||
|
mexPrintf("Length of label vector does not match # of instances.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
elements = num_samples + l;
|
||
|
max_index = mxGetM(instance_mat_col);
|
||
|
|
||
|
prob.y = Malloc(double,l);
|
||
|
prob.x = Malloc(struct svm_node *,l);
|
||
|
prob.W = Malloc(double,l);
|
||
|
x_space = Malloc(struct svm_node, elements);
|
||
|
|
||
|
j = 0;
|
||
|
for(i=0;i<l;i++)
|
||
|
{
|
||
|
prob.x[i] = &x_space[j];
|
||
|
prob.y[i] = labels[i];
|
||
|
prob.W[i] = 1;
|
||
|
if(weight_vector_row_num == prob.l)
|
||
|
prob.W[i] *= (double) weights[i];
|
||
|
low = jc[i], high = jc[i+1];
|
||
|
for(k=low;k<high;k++)
|
||
|
{
|
||
|
x_space[j].index = (int)ir[k] + 1;
|
||
|
x_space[j].value = samples[k];
|
||
|
j++;
|
||
|
}
|
||
|
x_space[j++].index = -1;
|
||
|
}
|
||
|
|
||
|
if(param.gamma == 0 && max_index > 0)
|
||
|
param.gamma = (double)(1.0/max_index);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void fake_answer(int nlhs, mxArray *plhs[])
|
||
|
{
|
||
|
int i;
|
||
|
for(i=0;i<nlhs;i++)
|
||
|
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
|
||
|
}
|
||
|
|
||
|
// Interface function of matlab
|
||
|
// now assume prhs[0]: label prhs[1]: features
|
||
|
void mexFunction( int nlhs, mxArray *plhs[],
|
||
|
int nrhs, const mxArray *prhs[] )
|
||
|
{
|
||
|
const char *error_msg;
|
||
|
|
||
|
// fix random seed to have same results for each run
|
||
|
// (for cross validation and probability estimation)
|
||
|
srand(1);
|
||
|
|
||
|
if(nlhs > 1)
|
||
|
{
|
||
|
exit_with_help();
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Transform the input Matrix to libsvm format
|
||
|
if(nrhs > 2 && nrhs < 5)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1]))
|
||
|
{
|
||
|
mexPrintf("Error: label vector and instance matrix must be double\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(mxIsSparse(prhs[0]))
|
||
|
{
|
||
|
mexPrintf("Error: label vector should not be in sparse format\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(parse_command_line(nrhs, prhs, NULL))
|
||
|
{
|
||
|
exit_with_help();
|
||
|
svm_destroy_param(¶m);
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(mxIsSparse(prhs[2]))
|
||
|
{
|
||
|
if(param.kernel_type == PRECOMPUTED)
|
||
|
{
|
||
|
// precomputed kernel requires dense matrix, so we make one
|
||
|
mxArray *rhs[1], *lhs[1];
|
||
|
|
||
|
rhs[0] = mxDuplicateArray(prhs[2]);
|
||
|
if(mexCallMATLAB(1, lhs, 1, rhs, "full"))
|
||
|
{
|
||
|
mexPrintf("Error: cannot generate a full training instance matrix\n");
|
||
|
svm_destroy_param(¶m);
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
err = read_problem_dense(prhs[0], prhs[1], lhs[0]);
|
||
|
mxDestroyArray(lhs[0]);
|
||
|
mxDestroyArray(rhs[0]);
|
||
|
}
|
||
|
else
|
||
|
err = read_problem_sparse(prhs[0], prhs[1], prhs[2]);
|
||
|
}
|
||
|
else
|
||
|
err = read_problem_dense(prhs[0], prhs[1], prhs[2]);
|
||
|
|
||
|
// svmtrain's original code
|
||
|
error_msg = svm_check_parameter(&prob, ¶m);
|
||
|
|
||
|
if(err || error_msg)
|
||
|
{
|
||
|
if (error_msg != NULL)
|
||
|
mexPrintf("Error: %s\n", error_msg);
|
||
|
svm_destroy_param(¶m);
|
||
|
free(prob.y);
|
||
|
free(prob.x);
|
||
|
free(prob.W);
|
||
|
free(x_space);
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(cross_validation)
|
||
|
{
|
||
|
double *ptr;
|
||
|
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
|
||
|
ptr = mxGetPr(plhs[0]);
|
||
|
ptr[0] = do_cross_validation();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int nr_feat = (int)mxGetN(prhs[2]);
|
||
|
const char *error_msg;
|
||
|
model = svm_train(&prob, ¶m);
|
||
|
error_msg = model_to_matlab_structure(plhs, nr_feat, model);
|
||
|
if(error_msg)
|
||
|
mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg);
|
||
|
svm_free_and_destroy_model(&model);
|
||
|
}
|
||
|
svm_destroy_param(¶m);
|
||
|
free(prob.y);
|
||
|
free(prob.x);
|
||
|
free(prob.W);
|
||
|
free(x_space);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
exit_with_help();
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
}
|