371 lines
10 KiB
C
371 lines
10 KiB
C
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include "../svm.h"
|
||
|
|
||
|
#include "mex.h"
|
||
|
#include "svm_model_matlab.h"
|
||
|
|
||
|
#ifdef MX_API_VER
|
||
|
#if MX_API_VER < 0x07030000
|
||
|
typedef int mwIndex;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#define CMD_LEN 2048
|
||
|
|
||
|
int print_null(const char *s,...) {}
|
||
|
int (*info)(const char *fmt,...) = &mexPrintf;
|
||
|
|
||
|
void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x)
|
||
|
{
|
||
|
int i, j, low, high;
|
||
|
mwIndex *ir, *jc;
|
||
|
double *samples;
|
||
|
|
||
|
ir = mxGetIr(prhs);
|
||
|
jc = mxGetJc(prhs);
|
||
|
samples = mxGetPr(prhs);
|
||
|
|
||
|
// each column is one instance
|
||
|
j = 0;
|
||
|
low = (int)jc[index], high = (int)jc[index+1];
|
||
|
for(i=low;i<high;i++)
|
||
|
{
|
||
|
x[j].index = (int)ir[i] + 1;
|
||
|
x[j].value = samples[i];
|
||
|
j++;
|
||
|
}
|
||
|
x[j].index = -1;
|
||
|
}
|
||
|
|
||
|
static void fake_answer(int nlhs, mxArray *plhs[])
|
||
|
{
|
||
|
int i;
|
||
|
for(i=0;i<nlhs;i++)
|
||
|
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
|
||
|
}
|
||
|
|
||
|
void predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability)
|
||
|
{
|
||
|
int label_vector_row_num, label_vector_col_num;
|
||
|
int feature_number, testing_instance_number;
|
||
|
int instance_index;
|
||
|
double *ptr_instance, *ptr_label, *ptr_predict_label;
|
||
|
double *ptr_prob_estimates, *ptr_dec_values, *ptr;
|
||
|
struct svm_node *x;
|
||
|
mxArray *pplhs[1]; // transposed instance sparse matrix
|
||
|
mxArray *tplhs[3]; // temporary storage for plhs[]
|
||
|
|
||
|
int correct = 0;
|
||
|
int total = 0;
|
||
|
double error = 0;
|
||
|
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
|
||
|
|
||
|
int svm_type=svm_get_svm_type(model);
|
||
|
int nr_class=svm_get_nr_class(model);
|
||
|
double *prob_estimates=NULL;
|
||
|
|
||
|
// prhs[1] = testing instance matrix
|
||
|
feature_number = (int)mxGetN(prhs[1]);
|
||
|
testing_instance_number = (int)mxGetM(prhs[1]);
|
||
|
label_vector_row_num = (int)mxGetM(prhs[0]);
|
||
|
label_vector_col_num = (int)mxGetN(prhs[0]);
|
||
|
|
||
|
if(label_vector_row_num!=testing_instance_number)
|
||
|
{
|
||
|
mexPrintf("Length of label vector does not match # of instances.\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
if(label_vector_col_num!=1)
|
||
|
{
|
||
|
mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ptr_instance = mxGetPr(prhs[1]);
|
||
|
ptr_label = mxGetPr(prhs[0]);
|
||
|
|
||
|
// transpose instance matrix
|
||
|
if(mxIsSparse(prhs[1]))
|
||
|
{
|
||
|
if(model->param.kernel_type == PRECOMPUTED)
|
||
|
{
|
||
|
// precomputed kernel requires dense matrix, so we make one
|
||
|
mxArray *rhs[1], *lhs[1];
|
||
|
rhs[0] = mxDuplicateArray(prhs[1]);
|
||
|
if(mexCallMATLAB(1, lhs, 1, rhs, "full"))
|
||
|
{
|
||
|
mexPrintf("Error: cannot full testing instance matrix\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
ptr_instance = mxGetPr(lhs[0]);
|
||
|
mxDestroyArray(rhs[0]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mxArray *pprhs[1];
|
||
|
pprhs[0] = mxDuplicateArray(prhs[1]);
|
||
|
if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
|
||
|
{
|
||
|
mexPrintf("Error: cannot transpose testing instance matrix\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(predict_probability)
|
||
|
{
|
||
|
if(svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
||
|
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
|
||
|
else
|
||
|
prob_estimates = (double *) malloc(nr_class*sizeof(double));
|
||
|
}
|
||
|
|
||
|
tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
|
||
|
if(predict_probability)
|
||
|
{
|
||
|
// prob estimates are in plhs[2]
|
||
|
if(svm_type==C_SVC || svm_type==NU_SVC)
|
||
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
|
||
|
else
|
||
|
tplhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// decision values are in plhs[2]
|
||
|
if(svm_type == ONE_CLASS ||
|
||
|
svm_type == EPSILON_SVR ||
|
||
|
svm_type == NU_SVR ||
|
||
|
nr_class == 1) // if only one class in training data, decision values are still returned.
|
||
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
|
||
|
else
|
||
|
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL);
|
||
|
}
|
||
|
|
||
|
ptr_predict_label = mxGetPr(tplhs[0]);
|
||
|
ptr_prob_estimates = mxGetPr(tplhs[2]);
|
||
|
ptr_dec_values = mxGetPr(tplhs[2]);
|
||
|
x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) );
|
||
|
for(instance_index=0;instance_index<testing_instance_number;instance_index++)
|
||
|
{
|
||
|
int i;
|
||
|
double target_label, predict_label;
|
||
|
|
||
|
target_label = ptr_label[instance_index];
|
||
|
|
||
|
if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse
|
||
|
read_sparse_instance(pplhs[0], instance_index, x);
|
||
|
else
|
||
|
{
|
||
|
for(i=0;i<feature_number;i++)
|
||
|
{
|
||
|
x[i].index = i+1;
|
||
|
x[i].value = ptr_instance[testing_instance_number*i+instance_index];
|
||
|
}
|
||
|
x[feature_number].index = -1;
|
||
|
}
|
||
|
|
||
|
if(predict_probability)
|
||
|
{
|
||
|
if(svm_type==C_SVC || svm_type==NU_SVC)
|
||
|
{
|
||
|
predict_label = svm_predict_probability(model, x, prob_estimates);
|
||
|
ptr_predict_label[instance_index] = predict_label;
|
||
|
for(i=0;i<nr_class;i++)
|
||
|
ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
|
||
|
} else {
|
||
|
predict_label = svm_predict(model,x);
|
||
|
ptr_predict_label[instance_index] = predict_label;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(svm_type == ONE_CLASS ||
|
||
|
svm_type == EPSILON_SVR ||
|
||
|
svm_type == NU_SVR)
|
||
|
{
|
||
|
double res;
|
||
|
predict_label = svm_predict_values(model, x, &res);
|
||
|
ptr_dec_values[instance_index] = res;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2);
|
||
|
predict_label = svm_predict_values(model, x, dec_values);
|
||
|
if(nr_class == 1)
|
||
|
ptr_dec_values[instance_index] = 1;
|
||
|
else
|
||
|
for(i=0;i<(nr_class*(nr_class-1))/2;i++)
|
||
|
ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
|
||
|
free(dec_values);
|
||
|
}
|
||
|
ptr_predict_label[instance_index] = predict_label;
|
||
|
}
|
||
|
|
||
|
if(predict_label == target_label)
|
||
|
++correct;
|
||
|
error += (predict_label-target_label)*(predict_label-target_label);
|
||
|
sump += predict_label;
|
||
|
sumt += target_label;
|
||
|
sumpp += predict_label*predict_label;
|
||
|
sumtt += target_label*target_label;
|
||
|
sumpt += predict_label*target_label;
|
||
|
++total;
|
||
|
}
|
||
|
if(svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
||
|
{
|
||
|
info("Mean squared error = %g (regression)\n",error/total);
|
||
|
info("Squared correlation coefficient = %g (regression)\n",
|
||
|
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
||
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
|
||
|
);
|
||
|
}
|
||
|
else
|
||
|
info("Accuracy = %g%% (%d/%d) (classification)\n",
|
||
|
(double)correct/total*100,correct,total);
|
||
|
|
||
|
// return accuracy, mean squared error, squared correlation coefficient
|
||
|
tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL);
|
||
|
ptr = mxGetPr(tplhs[1]);
|
||
|
ptr[0] = (double)correct/total*100;
|
||
|
ptr[1] = error/total;
|
||
|
ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
||
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt));
|
||
|
|
||
|
free(x);
|
||
|
if(prob_estimates != NULL)
|
||
|
free(prob_estimates);
|
||
|
|
||
|
switch(nlhs)
|
||
|
{
|
||
|
case 3:
|
||
|
plhs[2] = tplhs[2];
|
||
|
plhs[1] = tplhs[1];
|
||
|
case 1:
|
||
|
case 0:
|
||
|
plhs[0] = tplhs[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void exit_with_help()
|
||
|
{
|
||
|
mexPrintf(
|
||
|
"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n"
|
||
|
" [predicted_label] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n"
|
||
|
"Parameters:\n"
|
||
|
" model: SVM model structure from svmtrain.\n"
|
||
|
" libsvm_options:\n"
|
||
|
" -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
|
||
|
" -q : quiet mode (no outputs)\n"
|
||
|
"Returns:\n"
|
||
|
" predicted_label: SVM prediction output vector.\n"
|
||
|
" accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.\n"
|
||
|
" prob_estimates: If selected, probability estimate vector.\n"
|
||
|
);
|
||
|
}
|
||
|
|
||
|
void mexFunction( int nlhs, mxArray *plhs[],
|
||
|
int nrhs, const mxArray *prhs[] )
|
||
|
{
|
||
|
int prob_estimate_flag = 0;
|
||
|
struct svm_model *model;
|
||
|
info = &mexPrintf;
|
||
|
|
||
|
if(nlhs == 2 || nlhs > 3 || nrhs > 4 || nrhs < 3)
|
||
|
{
|
||
|
exit_with_help();
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
|
||
|
mexPrintf("Error: label vector and instance matrix must be double\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(mxIsStruct(prhs[2]))
|
||
|
{
|
||
|
const char *error_msg;
|
||
|
|
||
|
// parse options
|
||
|
if(nrhs==4)
|
||
|
{
|
||
|
int i, argc = 1;
|
||
|
char cmd[CMD_LEN], *argv[CMD_LEN/2];
|
||
|
|
||
|
// put options in argv[]
|
||
|
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1);
|
||
|
if((argv[argc] = strtok(cmd, " ")) != NULL)
|
||
|
while((argv[++argc] = strtok(NULL, " ")) != NULL)
|
||
|
;
|
||
|
|
||
|
for(i=1;i<argc;i++)
|
||
|
{
|
||
|
if(argv[i][0] != '-') break;
|
||
|
if((++i>=argc) && argv[i-1][1] != 'q')
|
||
|
{
|
||
|
exit_with_help();
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
switch(argv[i-1][1])
|
||
|
{
|
||
|
case 'b':
|
||
|
prob_estimate_flag = atoi(argv[i]);
|
||
|
break;
|
||
|
case 'q':
|
||
|
i--;
|
||
|
info = &print_null;
|
||
|
break;
|
||
|
default:
|
||
|
mexPrintf("Unknown option: -%c\n", argv[i-1][1]);
|
||
|
exit_with_help();
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
model = matlab_matrix_to_model(prhs[2], &error_msg);
|
||
|
if (model == NULL)
|
||
|
{
|
||
|
mexPrintf("Error: can't read model: %s\n", error_msg);
|
||
|
fake_answer(nlhs, plhs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(prob_estimate_flag)
|
||
|
{
|
||
|
if(svm_check_probability_model(model)==0)
|
||
|
{
|
||
|
mexPrintf("Model does not support probabiliy estimates\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
svm_free_and_destroy_model(&model);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(svm_check_probability_model(model)!=0)
|
||
|
info("Model supports probability estimates, but disabled in predicton.\n");
|
||
|
}
|
||
|
|
||
|
predict(nlhs, plhs, prhs, model, prob_estimate_flag);
|
||
|
// destroy model
|
||
|
svm_free_and_destroy_model(&model);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mexPrintf("model file should be a struct array\n");
|
||
|
fake_answer(nlhs, plhs);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|