121 lines
3.2 KiB
Python
121 lines
3.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import os, sys, math, random
|
||
|
from collections import defaultdict
|
||
|
|
||
|
if sys.version_info[0] >= 3:
|
||
|
xrange = range
|
||
|
|
||
|
def exit_with_help(argv):
|
||
|
print("""\
|
||
|
Usage: {0} [options] dataset subset_size [output1] [output2]
|
||
|
|
||
|
This script randomly selects a subset of the dataset.
|
||
|
|
||
|
options:
|
||
|
-s method : method of selection (default 0)
|
||
|
0 -- stratified selection (classification only)
|
||
|
1 -- random selection
|
||
|
|
||
|
output1 : the subset (optional)
|
||
|
output2 : rest of the data (optional)
|
||
|
If output1 is omitted, the subset will be printed on the screen.""".format(argv[0]))
|
||
|
exit(1)
|
||
|
|
||
|
def process_options(argv):
|
||
|
argc = len(argv)
|
||
|
if argc < 3:
|
||
|
exit_with_help(argv)
|
||
|
|
||
|
# default method is stratified selection
|
||
|
method = 0
|
||
|
subset_file = sys.stdout
|
||
|
rest_file = None
|
||
|
|
||
|
i = 1
|
||
|
while i < argc:
|
||
|
if argv[i][0] != "-":
|
||
|
break
|
||
|
if argv[i] == "-s":
|
||
|
i = i + 1
|
||
|
method = int(argv[i])
|
||
|
if method not in [0,1]:
|
||
|
print("Unknown selection method {0}".format(method))
|
||
|
exit_with_help(argv)
|
||
|
i = i + 1
|
||
|
|
||
|
dataset = argv[i]
|
||
|
subset_size = int(argv[i+1])
|
||
|
if i+2 < argc:
|
||
|
subset_file = open(argv[i+2],'w')
|
||
|
if i+3 < argc:
|
||
|
rest_file = open(argv[i+3],'w')
|
||
|
|
||
|
return dataset, subset_size, method, subset_file, rest_file
|
||
|
|
||
|
def random_selection(dataset, subset_size):
|
||
|
l = sum(1 for line in open(dataset,'r'))
|
||
|
return sorted(random.sample(xrange(l), subset_size))
|
||
|
|
||
|
def stratified_selection(dataset, subset_size):
|
||
|
labels = [line.split(None,1)[0] for line in open(dataset)]
|
||
|
label_linenums = defaultdict(list)
|
||
|
for i, label in enumerate(labels):
|
||
|
label_linenums[label] += [i]
|
||
|
|
||
|
l = len(labels)
|
||
|
remaining = subset_size
|
||
|
ret = []
|
||
|
|
||
|
# classes with fewer data are sampled first; otherwise
|
||
|
# some rare classes may not be selected
|
||
|
for label in sorted(label_linenums, key=lambda x: len(label_linenums[x])):
|
||
|
linenums = label_linenums[label]
|
||
|
label_size = len(linenums)
|
||
|
# at least one instance per class
|
||
|
s = int(min(remaining, max(1, math.ceil(label_size*(float(subset_size)/l)))))
|
||
|
if s == 0:
|
||
|
sys.stderr.write('''\
|
||
|
Error: failed to have at least one instance per class
|
||
|
1. You may have regression data.
|
||
|
2. Your classification data is unbalanced or too small.
|
||
|
Please use -s 1.
|
||
|
''')
|
||
|
sys.exit(-1)
|
||
|
remaining -= s
|
||
|
ret += [linenums[i] for i in random.sample(xrange(label_size), s)]
|
||
|
return sorted(ret)
|
||
|
|
||
|
def main(argv=sys.argv):
|
||
|
dataset, subset_size, method, subset_file, rest_file = process_options(argv)
|
||
|
#uncomment the following line to fix the random seed
|
||
|
#random.seed(0)
|
||
|
selected_lines = []
|
||
|
|
||
|
if method == 0:
|
||
|
selected_lines = stratified_selection(dataset, subset_size)
|
||
|
elif method == 1:
|
||
|
selected_lines = random_selection(dataset, subset_size)
|
||
|
|
||
|
#select instances based on selected_lines
|
||
|
dataset = open(dataset,'r')
|
||
|
prev_selected_linenum = -1
|
||
|
for i in xrange(len(selected_lines)):
|
||
|
for cnt in xrange(selected_lines[i]-prev_selected_linenum-1):
|
||
|
line = dataset.readline()
|
||
|
if rest_file:
|
||
|
rest_file.write(line)
|
||
|
subset_file.write(dataset.readline())
|
||
|
prev_selected_linenum = selected_lines[i]
|
||
|
subset_file.close()
|
||
|
|
||
|
if rest_file:
|
||
|
for line in dataset:
|
||
|
rest_file.write(line)
|
||
|
rest_file.close()
|
||
|
dataset.close()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main(sys.argv)
|
||
|
|