144 lines
4.2 KiB
Python
144 lines
4.2 KiB
Python
|
import math
|
||
|
from model import Model
|
||
|
from properties import Properties
|
||
|
|
||
|
|
||
|
class Ensemble(object):
|
||
|
|
||
|
def __init__(self, ensemble_size):
|
||
|
self.models = []
|
||
|
self.size = ensemble_size
|
||
|
|
||
|
|
||
|
"""
|
||
|
Update weights for all models in the ensemble.
|
||
|
"""
|
||
|
def updateWeight(self, data, isSource):
|
||
|
for m in self.models:
|
||
|
m.computeModelWeight(data, isSource, Properties.MAXVAR)
|
||
|
|
||
|
"""
|
||
|
Adding a new model to the Ensemble.
|
||
|
Returns the index of the Ensemble array where the model is added.
|
||
|
"""
|
||
|
def __addModel(self, model):
|
||
|
index = 0
|
||
|
if len(self.models) < self.size:
|
||
|
self.models.append(model)
|
||
|
index = len(self.models)-1
|
||
|
else:
|
||
|
#replace least desirable model
|
||
|
index = self.__getLeastDesirableModel()
|
||
|
Properties.logger.info('Least desirable model removed at ' + str(index))
|
||
|
self.models[index] = model
|
||
|
return index
|
||
|
|
||
|
"""
|
||
|
Compute the least desirable model to be replaced when the ensemble size has reached its limit.
|
||
|
Least desirable is one having least target weight, but not the largest source weight.
|
||
|
Returns the array index of the least desired model.
|
||
|
"""
|
||
|
def __getLeastDesirableModel(self):
|
||
|
sweights = {}
|
||
|
tweights = {}
|
||
|
for i in xrange(len(self.models)):
|
||
|
sweights[i] = self.models[i].sweight
|
||
|
tweights[i] = self.models[i].tweight
|
||
|
|
||
|
skeys = sorted(sweights, reverse=True, key=sweights.get)
|
||
|
tkeys = sorted(tweights, key=tweights.get)
|
||
|
|
||
|
# skeys = sweights.keys()
|
||
|
# tkeys = tweights.keys()
|
||
|
|
||
|
for i in xrange(len(skeys)):
|
||
|
if tkeys[i] == skeys[i]:
|
||
|
continue
|
||
|
else:
|
||
|
return tkeys[i]
|
||
|
|
||
|
return tkeys[0]
|
||
|
|
||
|
"""
|
||
|
Initiate the creation of appropriate model in the ensemble for given source or target data.
|
||
|
Also compute weights for the new model based on the current data.
|
||
|
"""
|
||
|
def generateNewModel(self, sourceData, targetData, isSource):
|
||
|
model = Model()
|
||
|
|
||
|
if len(sourceData) == 0 or len(targetData) == 0:
|
||
|
raise Exception('Source or Target stream should have some elements')
|
||
|
|
||
|
#Create new model
|
||
|
if isSource:
|
||
|
Properties.logger.info('Source model creation')
|
||
|
model.train(sourceData, None, Properties.MAXVAR)
|
||
|
else:
|
||
|
Properties.logger.info('Target model creation')
|
||
|
model.train(sourceData, targetData, Properties.MAXVAR)
|
||
|
|
||
|
#compute source and target weight
|
||
|
Properties.logger.info('Computing model weights')
|
||
|
model.computeModelWeight(sourceData, True, Properties.MAXVAR)
|
||
|
model.computeModelWeight(targetData, False, Properties.MAXVAR)
|
||
|
|
||
|
#update ensemble
|
||
|
index = self.__addModel(model)
|
||
|
Properties.logger.info('Ensemble updated at ' + str(index))
|
||
|
|
||
|
"""
|
||
|
Get prediction for a given data instance from each model.
|
||
|
For source data: Ensemble prediction is 1 if maximum weighted vote class label matches true class label, else 0.
|
||
|
For target data: Ensemble prediction class with max weighted vote class label, and average (for all class) confidence measure.
|
||
|
"""
|
||
|
def evaluateEnsemble(self, dataInstance, isSource):
|
||
|
|
||
|
classSum = {}
|
||
|
for m in self.models:
|
||
|
#test data instance in each model
|
||
|
result = m.test([dataInstance], Properties.MAXVAR)
|
||
|
#gather result
|
||
|
if isSource:
|
||
|
if int(result[0][0]) in classSum:
|
||
|
classSum[int(result[0][0])] += m.sweight
|
||
|
else:
|
||
|
classSum[int(result[0][0])] = m.sweight
|
||
|
else:
|
||
|
if int(result[0][0]) in classSum:
|
||
|
classSum[int(result[0][0])] += result[0][1]
|
||
|
else:
|
||
|
classSum[int(result[0][0])] = result[0][1]
|
||
|
|
||
|
#get maximum voted sum class label
|
||
|
classMax = 0.0
|
||
|
sumMax = max(classSum.values())
|
||
|
for i in classSum:
|
||
|
if classSum[i] == sumMax:
|
||
|
classMax = i
|
||
|
|
||
|
if isSource:
|
||
|
#for source data, check true vs predicted class label
|
||
|
if classMax == dataInstance[-1]:
|
||
|
return [1, -1]
|
||
|
else:
|
||
|
return [0, -1]
|
||
|
else:
|
||
|
# for target data
|
||
|
return [classMax, sumMax/len(self.models)]
|
||
|
|
||
|
"""
|
||
|
Get summary of models in ensemble.
|
||
|
"""
|
||
|
def getEnsembleSummary(self):
|
||
|
summry = '************************* E N S E M B L E S U M M A R Y ************************\n'
|
||
|
summry += 'Ensemble has currently ' + str(len(self.models)) + ' models.\n'
|
||
|
for i in xrange(len(self.models)):
|
||
|
summry += 'Model' + str(i+1) + ': weights<' + str(self.models[i].sweight) + ', ' + str(self.models[i].tweight) + '>\n'
|
||
|
return summry
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|